Home » Uncategorized » Digital References

Digital References

Sex-Specific and Regional Analysis of Heart Disease Prediction Using Machine Learning Algorithms: Insights from the UCI Irvine Public Heart Disease Datasets (Cleveland and Long Beach)
Jonathan Asanjarani
City University of New York Graduate Center
DATA 79000: Capstone Project and Thesis
Advisor: Johanna Devaney
November 25th, 2024


Software and Tools Used

  1. Google Colab
    • Description: Cloud-based Python environment with GPU access for accelerated computation.
    • URL: https://colab.research.google.com
    • Accessed: November 2024
  2. Python
    • Version: 3.8
    • Description: High-level programming language used for data analysis, modeling, and visualization.
    • URL: https://www.python.org
    • Accessed: November 2024
  3. Scikit-learn
    • Version: 1.2.0
    • Description: Library for machine learning algorithms, preprocessing, and evaluation.
    • URL: https://scikit-learn.org/stable/
    • Accessed: November 2024
  4. XGBoost
    • Version: 1.6.0
    • Description: Gradient boosting library optimized for supervised learning tasks.
    • URL: https://xgboost.ai
    • Accessed: November 2024
  5. Pandas
    • Version: 1.4.3
    • Description: Data manipulation and analysis library for structured data.
    • URL: https://pandas.pydata.org
    • Accessed: November 2024
  6. NumPy
    • Version: 1.23.0
    • Description: Library for numerical computations and array processing.
    • URL: https://numpy.org
    • Accessed: November 2024
  7. Matplotlib
    • Version: 3.6.0
    • Description: Visualization library for static and interactive graphics.
    • URL: https://matplotlib.org
    • Accessed: November 2024
  8. Seaborn
    • Version: 0.12.2
    • Description: Statistical data visualization library built on Matplotlib.
    • URL: https://seaborn.pydata.org
    • Accessed: November 2024
  9. ASCVD Risk Calculator

Datasets

  1. Cleveland Heart Disease Dataset
  2. VA Long Beach Heart Disease Dataset

Guidelines and Methodological References

  1. Mueller, Andreas C., & Guido, Sarah
  2. Software Sustainability Institute

Additional Resources for Citing Software and Data

  1. Digital Curation Centre
  2. DataCite

Leave a comment

Your email address will not be published. Required fields are marked *